... for a brighter future A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Argonne # Summary of On-Board Storage Models and Analyses R.K. Ahluwalia, T. Q. Hua and J-K Peng Hydrogen Delivery Analysis Meeting FreedomCAR and Fuels Partnership Delivery, Storage and Hydrogen Pathways Tech Teams > May 8-9, 2007 Columbia, MD # On-Board Hydrogen Storage System with a Liquid Carrier Objective: To determine the performance of the on-board system relative to the storage targets (capacity, efficiency, etc) - 1. On-Board System Configuration - 2. Dehydrogenation Reactor - Dehydrogenation kinetics - Trickle bed hydrodynamics - Dehydrogenation reactor model - Reactor performance with pelletized and supported catalysts - 3. System Performance - Storage efficiency - Storage capacity # Fuel Cell System with H₂ Stored in a Liquid Carrier - Once-through anode gas system with controlled H₂ utilization - Burner uses depleted air split-off from spent cathode stream - Burner exhaust expanded in gas turbine to recover additional power ## Developing & Validating Model for DeH2 Reactor #### Dehydrogenation kinetics $$- R_1 = R_2 + 2H_2$$ $$R_2 = R_3 + 2H_2$$ $$R_3 = R_4 + 2H_2$$ - Kinetic constants from batch reactor data, APCI Patent - 8 g N-ethylcarbazole, 20-cc reactor, 0.2-g 4% Pd on Li aluminate powder catalyst - Trickle-bed reactor model - First-order kinetics with internal & external mass transfer - Trickle bed hydrodynamics - ODEs for T and species flow - TBR data for 5% Pd on alumina catalyst ### Trickle Bed Reactor Hydrodynamics Neural Network Model | Parameter | Reı | Re _g | Fr _I | Fr_g | Weı | Xı | Χg | St _I | Stg | Scı | Scg | Ga _l | Ca _l | Ca _g | Bi | Pe _l | Peg | $\rho_{g,l}$ | α | $d_{p,r}$ | Φ | ε | |--|----------|-----------------|-----------------|----------|----------|----|----|-----------------|----------|----------|----------|-----------------|-----------------|-----------------|----------|-----------------|----------|--------------|----------|-----------|---|---| | Slip factors: f _s , f _v | 1 | √ | 1 | | 1 | 1 | | 1 | | | | | | | | | | | | | | | | Ergun constants: E ₁ , E ₂ | 1 | √ | 1 | | Liquid-catalyst mass transfer coefficient | V | 1 | | | | | | V | | √ | | √ | | | | | | | 1 | | | | | Volumetric liquid-side mass transfer coefficient | | 1 | | | √ | | | √ | V | √ | | | √ | V | | | | | 1 | 1 | | | | Volumetric gas-side mass transfer coefficient | V | √ | | √ | | | | √ | | | V | | | | | | | | V | | | | | Liquid-wall heat transfer coefficient | 1 | | | √ | √ | | | V | | | | | | | | √ | √ | | | √ | | | | Bed radial thermal conductivity | 1 | | | √ | √ | | | | | | | | | | √ | √ | √ | | | | | | | Wetting efficiency | 1 | 1 | 1 | | 1 | 1 | 1 | √ | | | | √ | | | | | | √ | 1 | 1 | √ | √ | | Pressure drop | √ | 1 | | | 1 | 1 | | | | | | 1 | | | | | | | 1 | | | | | Liquid holdup | √ | 1 | | | 1 | | 1 | | | | | | | | | | | | 1 | | | | Re Reynolds number Ga Galileo number d_n Catalyst diameter d_r Reactor diameter Fr Froud number Ca Capillary number Pe Peclet number Φ Sphericity factor We Weber number Sc Schmidt number Bi Biot number ε Void fraction X Lockhart-Martinelli number St Stokes number ρ Density **Subscripts:** α Bed correction factor I Liquid **g** Gas References: Ind. Eng. Chem. Res., 37 (1998), 4542-4550 Ind. Eng. Chem. Res. 42 (2003) 222-242 Chem. Eng. Sci., 54 (1999) 5229-5337 # Conversion with Pelletized Catalysts #### Reactor Parameters - Pellet diameter = 3 mm - Bulk density = 800 kg/m³ - HX tube diameter = 3/8" - AL 2219-T81 construction #### Analysis Method | Variable | Constraint | | | | | | | |----------------------------|---|--|--|--|--|--|--| | LCH ₂ flow rate | 2 g/s ^a H ₂ to FCS ^b | | | | | | | | HTF flow rate | $\Delta T_f = 5^{\circ}C$ | | | | | | | | No. of tubes | Q = 83 kWc | | | | | | | ^a3 g/s total H₂ for N-ethylcarbazole ^b100-kWe FCS c∆H = 51 kJ/mol for N-ethylcarbazol LHSV=volumetric flow rate/reactor volume # Conversion with Dispersed Catalyst ANL-IN-07-019 - 40-ppi Al-6101 foam, 92% porosity - 50-μm catalyst washcoat, 224 kg/m³ bulk density - Marked improvement in catalyst effectiveness if supported on foam although the wetting efficiency decreases - Trickle flow on foam has not been demonstrated ### Part-Load Performance - Higher conversion with constant HTF flow rate especially at low loads - Transient performance - Actual conversion on a drive cycle may be higher or lower than the steady-state value - Response time - Pressure control? - Buffer storage? # Reactor Weight and Volume Distribution - Total weight of reactor = 23 kg - HX tubes ~ 2/3rd of total weight - Larger ΔT (T_{HTF} T_R) for lighter HX at expense of η_{ss} - Heat transfer augmentation important with more active catalyst - Total volume of reactor = 53 L - Possible to trade-off insulation volume with heat loss - 110 W heat loss with 2-cm insulation ## Argonne HTCHS: System Analysis #### **Dehydrogenation Reactor** - T_R function of P(H₂), conversion, ΔH, ΔS, and ΔT_{eq} - Trickle flow, 20 h⁻¹ LHSV - Catalyst supported on 40-PPI foam - HX tubes with 90° inserts - AL-2219-T81 alloy, 2.25 SF - 2 cm insulation thickness #### **Heat Transfer Fluid** - XCELTHERM ® - 5°C Δ T in DeH2-HX, T_{HTF} T_{R} = 50°C #### **HEX Burner** - Non-catalytic, spent H₂ and 5% excess spent air - Counterflow microchannel, inconel - 100°C approach temperature #### H₂ Cooler - LCH2 coolant, T_{outlet} = T_{FC} - Counterflow, microchannel, SS #### Recuperator - LC/LCH2 HX, $T_{LCH2} = T_R 10^{\circ}C$ - Counterflow, microchannel, SS #### **LC Radiator** - $T_{LC} = 70^{\circ}C$ - Integrated with FCS radiator - W and V not included in HTCHS #### LCH₂/LC Storage Tank - Single tank design, HPDE construction - 10% excess volume #### **Pumps** - HTF pressure head: 1 bar - LCH2 pressure head: 8 bar #### H₂ Separation Coagulating filter #### H₂ Buffer Storage - 20 g H₂ at 80°C, P(H₂) - AL-2219-T81 alloy tank, 2.25 SF #### **Miscellaneous** # On-Board Storage System Efficiency - Storage system efficiency defined as fraction of H₂ librated in dehydrogenation reactor that is available for use in fuel cell stack - Efficiency could be ~100% if $\Delta H < 40$ kJ/mol and $T_R < T_{FC}$ - LC: 0.95-1.2 g/cc,5.8 wt% H₂ - 95% conversion - DeH₂ LHSV: 20 h⁻¹ - ΔT_{eq} : 50°C - Burner HX: 100°C approach T - 2 g/s net H₂ output - \blacksquare P(H₂): 8 bar - 0.8-1.4 kWe HTF pump - Start-up energy not included # Reverse Engineering: H₂ Storage Capacity - System capacity presented in terms of stored H₂ - Recoverable H₂: 95% intrinsic material capacity (conversion) - Usable H₂ = Storage system efficiency x Recoverable H₂ - System capacity with N-ethylcarbazole: 4.4% wt% H₂, 35 g/L H₂ (H₂ stored basis); 2.8% wt% H₂, 23 g/L H₂ including losses - 95% conversion, 67.7% storage system efficiency - LC: 0.95-1.2 g/cc - LC tank: 10% excess volume - ΔH₂ LHSV: 20 h⁻¹ - lacksquare ΔT_{eq} : 50°C - Burner HX: 100°C approach - 2 g/s net H₂ - 20-g H₂ buffer - P(H_2): 8 bar # **Preliminary Conclusions** - 1. Dehydrogenation reactor will need a supported catalyst - Desirable to have LHSV > 20 h⁻¹ for >95% conversion - May need $\Delta T > 50^{\circ}C$ for compact HX ($\Delta T = T_{HTF} T_{R}$) - 2. Need $\Delta H < 40$ kJ/mol for >90% on-board storage efficiency - 3. Material capacities to meet system storage targets | | System Capacity ^a | | | | | | |--------------------|------------------------------|---------------------|--|--|--|--| | Material Capacity | Gravimetric | Volumetric | | | | | | wt% H ₂ | wt% H ₂ | g-H ₂ /L | | | | | | 5.8 | 4.4 | 35 | | | | | | 6.0 | 4.5 | 36 | | | | | | 8.6 | 6.0 | 48 | | | | | | 14.5 | 9.0 | 68 ^b | | | | | ^aStored H₂ basis ^bH₂ buffer has to decrease for 81 g/L volumetric capacity ### **Future Work** Continue to work with DOE contractors and COE to model and analyze various developmental hydrogen storage systems. #### Metal Hydrides - Analyze system with the most promising candidate - Reverse engineering to determine material capacities #### Carbon Storage Extend work to carbon and other sorbents #### Chemical Hydrogen - Evaluate regeneration energy consumption and fuel cycle efficiency of candidate materials and processes - Liquid carrier option - Validate model with experimental data for more active catalysts - Sensitivity study (P, buffer H₂ storage) - Extension to the "best" APCI carrier with the "best" APCI catalyst - Fuel cycle analysis - Collaboration with TIAX on cost analysis # SBH Regeneration Analysis – Energy Requirements and Efficiencies - Brown-Schlesinger process requires 4 moles Na per mole of NaBH₄ - Na recovery is the most energy intensive step in SBH regeneration - MCEL has demonstrated a laboratory method for recycling Na in a closed loop - NaOH and NaBO₂ electrolysis with or without H₂ assist - No make-up Na needed (assuming 100% recovery efficiency) Source: Millennium Cel # Na Recovery - H₂-assisted electrolysis - Anhydrous or aqueous NaOH 3 NaOH + 3/2 H₂ →3 Na + 3 H₂O - Aqueous $NaBO_2$ $NaBO_2 + 1/2 H_2 + H_2O \rightarrow Na + H_3BO_3$ - Electrolysis without H₂ assist - Anhydrous or aqueous NaOH 3 NaOH → 3 Na + 3/4 O₂ + 3/2 H₂O - Aqueous NaBO₂ NaBO₂ + 3/2 H₂O \rightarrow Na + 1/4 O₂ + H₃BO₃ - Current efficiency ~100% (MCEL) - Theoretical current efficiency without membrane is 50% (commercial ~40%). Electrolyzer ## NaOH and NaBO₂ Electrolysis (MCEL) | Parameters | Anhydro | us NaOH | Aqueou | ıs NaOH | Aqueous NaBO ₂ | | | | |---------------------------|-----------------------|------------|-----------------------|------------|---------------------------|------------|--|--| | | H ₂ assist | w/o assist | H ₂ assist | w/o assist | H ₂ assist | w/o assist | | | | Current efficiency, % | 100 | 100 | 100 | 100 | 100 | 100 | | | | Voltage efficiency, % | 90 | 80 | 72 | 70 | 70 | 77 | | | | Overall efficiency, % | 90 | 80 | 72 | 70 | 70 | 77 | | | | Temperature, °C | 350 | 350 | 110 | 110 | 130 | 130 | | | | Cell operating voltage, V | 1.3 | 2.7 | 2.5 | 4.0 | 2.8 | 4.0 | | | | Electricity, kwh/kg Na | 1.5 | 3.1 | 2.9 | 4.7 | 3.3 | 4.7 | | | Data provided by Millennium Cell ## **Brown-Schlesinger Processes** - SH production - React Na with H₂ in mineral oil to form SH - TMB production - Dissolve boric acid in methanol to form TMB solution. TMB is separated by extraction and distillation - LSBH production - React SH with TMB to form SBH and sodium methoxide - The product is hydrolyzed to form a solution of SBH, methanol, sodium hydroxide, and water - Methanol is distilled off and used in TMB production - Final product - IPA is used to extract SBH from LSBH solution. Water is mixed with dry SBH to the desired SBH concentration ## AnH-AqH: H₂-Assisted, Anhydrous NaOH/Aqueous NaBO₂ ### AqH-AqH: H₂-Assisted, Aqueous NaOH/Aqueous NaBO₂ ## An-Aq: w/o H₂ Assist, Anhydrous NaOH/Aqueous NaBO₂ ### Aq-Aq: w/o H₂ Assist, Aqueous NaOH/Aqueous NaBO₂ # Energy Consumption (50% Heat Integration, U.S. Grid 2015) # Material Losses in Regeneration Plant - Sources of Na losses - Formation of Na compounds in parallel to SBH in Brown-Schlesinger process - Sources of CH₃OH losses - Fugitive emissions - Vent gases from methanol scrubbers - Sources of H₃BO₃ losses - Less than 100% yield of azeotrope in TMB production (ex., formation of methyl metaborate) - Energy consumption to replenish lost materials - Na from NaCl electrolysis: 9.1 kWh/kg - CH₃OH from natural gas: 63% efficiency (GREET data) - H₃BO₃ from rxn of inorganic borates with H₂SO₄: 6.3 MJ/kg # SBH Regeneration Efficiency with Closed Brown-Schlesinger Process - WTE efficiency is 17-23% for H₂-assisted electrolysis options and 14-19% without H₂ assist. - Results based on 2015 U.S. grid 2015 & 80% regen plant thermal efficiency - Na recovery accounts for 45-80% of total energy consumed in SBH regeneration. - Loss of material, especially Na, may further reduce the efficiency. ## **Summary and Conclusions** - Four Na recycling options (NaOH and NaBO₂ electrolysis) for SBH regeneration were analyzed with FCHtool. - Current efficiency approaches 100% (MCEL data) compared to less than 50% without membrane (industrial process). - Heat integration within the regeneration plant was varied parametrically. - Na recovery accounts for 45-80% of the total energy consumed in SBH regeneration. - The WTE efficiency is 17-23% for H₂-assisted electrolysis options and 14-19% without H₂ assist. - Loss of material, especially Na, may further reduce the efficiency by up to a few percentage points.